

The Role of Al in Modern Process Safety

Bahman Abdolhamidzadeh, PhD, CCPSC®

Agenda

- Introduction & Orientation
- Gen-Al Four Capacities + Use Cases
- Challenges & Considerations
- Areas of Opportunity
- Closing Thoughts Q&A

Let's Get Oriented

- Al is an umbrella term. This webinar mainly focuses on Gen-Al.
- I'm a Chemical Engineer not a Computer Science Expert.
- My assumption is that you are familiar with Al's basic definitions and terminology.
- Majority of AI use cases in this webinar are in the HIRA realm.
- This webinar's main goal is to give you fresh ideas you can explore further on your own.

Why Now?

Forbes

According to Forbes, more than 92% of oil and gas companies are investing in Al technologies, with their capital expenditure on Al projected to hit \$2.38 billion by the end of 2023, rising to \$4.21 billion by the end of 2028.

What's Gen-Al?

Generative AI is a subfield of Machine Learning and therefore AI in general, that focuses on generating new content (text, images, audio, code, etc.) based on learned patterns from training data.

Foundation: Built largely on ML, especially deep learning and neural networks.

What's out of Scope?

- Machine Learning and Process
 Control / Optimization
- Fault prediction and Predictive-Preventive Maintenance

- Data Analysis, Pattern Recognition
 for Incident Investigation & Analysis
- Drone & Robotics, Inspection and Mechanical Integrity

Area	Use of Gen-AI?
Risk Assessment	
Incident Investigation	
Predictive Maintenance	
Process Control	

CAPABILITIES OF GEN-AI

An Al Tool our enhances our speed and precision.

TOOL

ASSISTANT

An Al Assistant organizes and augments our workflows.

An Al Peer our An Al Peer ough improves our thinking through thinking ent intelligent intelligent dialogue.

PEER

MANAGER

An Independent
Al Agent, decide
and take action
autonomously.

Gen-Alasa TOOL

- Supports repetitive, data-heavy tasks
- Great for rule-based tasks
- No decision-making power

Gen-Alasa Tool - HIRA

TEXT PREDICTION

P&ID EXTRACTION

P&ID EXTRACTION

CASE STUDY: HAZOP NODE SELECTION & MARK-UP

Rules:

Tier 1 – Highest Priority (Always Enforced)

- •R1: Segment at major equipment (vessels, column, reactors). Major equipment should be the center point of nodes.
- •R2: Group equipment and flow lines with a common process objective and operating condition. Include associated equipment (e.g., pump with a storage tank, heat exchanger with reactor) unless the subcomponent has a complex system.
- •R3: Node boundaries at control valves, PRVs, regulators with significant $\Delta P/\Delta T$. Include these devices within the equipment node they regulate.
- •R5: Stop on unreadable or invalid drawings

CALCULATOR

CASE STUDY: GAS DISCHARGE MODELLING

Question: Calculate the discharge mass flow rate (kg/s) and discharge velocity (m/s) for a circular opening (1 inch diameter) on a 10 m³ methane vessel at 200 psig and 25 °C, discharging to atmospheric pressure. Only provide the final numerical values.

	Discharge Flow (kg/s)	Discharge Velocity (m/s)
DNV PHAST	1.12	414
Chat GPT (o3 model)	1.27	418
Manual Calculation	1.27	418

Mass Flow Rate (choked flow):

 $\hat{n} = C_d \cdot A \cdot P_0 \cdot \sqrt{rac{\gamma}{R \cdot T_0} \left(rac{2}{\gamma + 1}
ight)^{rac{\gamma + 1}{\gamma - 1}}}$

Discharge Velocity (choked):

$$v = \sqrt{\gamma \cdot R \cdot T_0 \cdot \left(rac{2}{\gamma + 1}
ight)}$$

Ref.: CCPS

Gen-Alasa ASSISTANT

 Al helps organize, research, write, or automate tasks based on user direction—similar to a human administrative or technical assistant.

 As an assistant, Al starts interacting with users offering suggestions, simplifying tasks, and supporting decisions.

Gen-Alasan ASSISTANT

Al-powered Help Chat bots

Gen-Alasa HAZOP ASSISTANT

Ref: Elhosary et.al., 2024

Gen-Alasan HAZOP ASSISTANT

Gen-Alasa PEER

- Collaborates with humans in decisionmaking, Co-Pilot.
- Can argue or challenge the input.
- Al Peers improve our thinking through intelligent dialogue.
- Al Assistants are not Co-pilots.

Gen-Alasa PEER

Multi-Persona Conversational Agents

Cognitive Digital Twin

Gen-Alasa MANAGER

- Autonomous prioritization and orchestration of safety measures
- Proactive safety governance
- Al decides and takes action autonomously

Challenges & Considerations

- Fundamental: Existential, Ethical & Economic concerns
- Technical: Safety & Reliability, Trust issue

DON'T FORGET HOW LLM WORK!

PROBABILITY ≠ CORRECTNESS

CORRECT

What is the LEL of natural gas?

Around 5%

Is double block and bleed always sufficient for isolation?

Yes, it is commonly used for isolation

CASE STUDY: GAS DISCHARGE MODELLING

Calculate the discharge mass flow rate (kg/s) and discharge velocity (m/s) for a circular opening (1 inch diameter) on a 10 m³ methane vessel at 200 psig and 25 °C, discharging to atmospheric pressure. Only provide the final numerical values.

Mass flow rate: 3.12 kg/s

Discharge velocity: 416 m/s

Calculate exponent:

$$\frac{\gamma+1}{\gamma-1} = \frac{1.31+1}{1.31-1} = \frac{2.31}{0.31} = 7.45$$

Calculate pressure term:

$$\left(rac{2}{\gamma+1}
ight)^{7.45} = \left(rac{2}{2.31}
ight)^{7.45} = 0.42^{7.45} pprox 0.0077$$

Calculate:

$$\frac{\gamma}{RT} = \frac{1.31}{518.3 \times 298} = \frac{1.31}{154,346} = 8.48 \times 10^{-6}$$

So inside the root:

$$8.48 \times 10^{-6} \times 0.0077 = 6.53 \times 10^{-8}$$

Square root:

$$\sqrt{6.53 \times 10^{-8}} = 8.08 \times 10^{-4}$$

Pressure in Pa:

$$P_1 = 214.7 \times 6894.76 = 1,480,439 Pa$$

Mass flow:

$$\dot{m} = 1 \times 5.067 \times 10^{-4} \times 1,480,439 \times 8.08 \times 10^{-4} = 0.0005067 \times 1,480,439 \times 0.000808 = 0.606 \, kg/s$$

	Discharge Flow (kg/s)	Discharge Velocity (m/s)
DNV PHAST	1.12	414
Chat GPT (o3 model)	1.27	418
Manual Calculation	1.27	418

$$\dot{m} = 1 \times 5.067 \times 10^{-4} \times 1,480,439 \times 8.08 \times 10^{-4} = 0.0005067 \times 1,480,439 \times 0.000808 = 0.606 \, kg/s$$

This result looks low compared to expected value.

Alternative simplified formula for choked flow mass velocity (mass flux):

$$G=P_1\sqrt{rac{\gamma}{RT}\left(rac{2}{\gamma+1}
ight)^{rac{\gamma+1}{\gamma-1}}}$$

Mass flow rate:

$$\dot{m}=C_dAG$$

Using this and the numbers above yields around 3.12 kg/s (from previous calculation, which aligns with literature and handbooks).

Al tends to be overly AGREEABLE!

Why this matters for Process Safety?

In safety-critical contexts, an Al's tendency to "agree" rather than critically challenge incorrect input could:

- Fail to flag dangerous assumptions.
- Overlook low-probability/high-impact hazards.
- Provide false reassurance in risk assessments.

CASE STUDY: HAZOP NODE SELECTION & MARK-UP

Areas of Opportunity

What to read & watch NEXT?

- All and the paradox of trust | Yuval Noah Harari
- Empire of Al: Dreams and Nightmares in Sam Altman's OpenAl (published May 20, 2025)
- Single, J. I., Schmidt, J., & Denecke, J. (2019). State of research on the automation of HAZOP studies. Journal of Loss Prevention in the Process Industries, 62, 103952.
- Ehab Elhosary & Osama Moselhi (2024). Automation for HAZOP study: A state-of-the-art review and future research directions. Journal of Information Technology in Construction (ITcon).
- Sycophancy in LLMs How Al Became a Yes Man—and the MIRROR Fix
- 2025: The State of Consumer Al
- I Think Therefor I am: No, LLMs Can Not Reason

Questions/Collaboration:

EMAIL: abdolhamidzadeh@gmail.com